Optimal Bayesian Experimental Design for Combustion Kinetics

Abstract

Experimental diagnostics play an essential role in the development and refinement of chemical kinetic models, whether for the combustion of common complex hydrocarbons or of emerging alternative fuels. Questions of experimental design—e.g., which variables or species to interrogate, at what resolution and under what conditions—are extremely important in this context, particularly when experimental resources are limited. This paper attempts to answer such questions in a rigorous and systematic way. We propose a Bayesian framework for optimal experimental design with nonlinear simulation-based models. While the framework is broadly applicable, we use it to infer rate parameters in a combustion system with detailed kinetics. The framework introduces a utility function that reflects the expected information gain from a particular experiment. Straightforward evaluation (and maximization) of this utility function requires Monte Carlo sampling, which is infeasible with computationally intensive models. Instead, we construct a polynomial surrogate for the dependence of experimental observables on model parameters and design conditions, with the help of dimension-adaptive sparse quadrature. Results demonstrate the efficiency and accuracy of the surrogate, as well as the considerable effectiveness of the experimental design framework in choosing informative experimental conditions.

Publication
49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
Date
Citation
X. Huan and Y. M. Marzouk. Optimal Bayesian Experimental Design for Combustion Kinetics. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA paper 2011–513, Orlando, FL, 2011. https://dx.doi.org/10.2514/6.2011-513

BibTeX

@inproceedings{Huan2011,
address = {Orlando, FL},
author = {Huan, Xun and Marzouk, Youssef M.},
booktitle = {49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition},
doi = {10.2514/6.2011-513},
number = {2011-513},
title = {{Optimal Bayesian Experimental Design for Combustion Kinetics}},
year = {2011}
}